Повышение эффективности защиты информации от утечек акустической речевой информации по вентиляции

Брехов Михаил Алексеевич

Существуют пассивные и активные методы защиты речевой информации. Пассивные заключаются в применении мер по ослаблению информативных сигналов на границе контролируемой зоны, а активные заключаются в «зашумлении» информативных сигналов. Внедрение средств пассивной защиты — дорогостоящий и сложно реализуемый процесс. Поэтому в большинстве случаев используются активные средства защиты — дешевые и легко внедряемые.

Использование средств активной защиты информации имеет существенный недостаток — создание паразитного акустического шума. Данный шум оказывает негативное влияние на человека, находящегося в защищаемом помещении. Оптимизация системы активной защиты заключается в выявлении методов и способов для наилучшего соотношения эффективности защиты и уровня негативных последствий.

В данной статье рассмотрены методы оптимизации средств активной защиты вентиляции и оценка эффективности их функционирования.

Основной оптимизацией средств активной защиты (САЗ) вентиляции является оптимальное размещение средства [1]. Правильное размещение обеспечивает выполнение требований защиты и наименьший уровень негативных последствий.

Основную опасность, с точки зрения возможности утечки информации по акустическому каналу, представляют различные тоннели и короба, такие как вентиляционные выходы [2].

Экспертным методом были выявлены основные рекомендации для выбора места размещения средств активной защиты в вентиляции:

- 1. САЗ необходимо располагать на расстоянии не менее 1,5 м в глубину от плоскости его выхода в выделенное помещение. При таком размещении шум колонки не слышен в выделенном помещении, а защищенность достигается при невысоких уровнях громкости САЗ (рис. 1)
- 2. Рекомендуется размещать САЗ в отдельном кожухе, который состыкован с коробом вентиляции в том месте, где от него выполнен отвод в защищаемое выделенное помещение (рис. 2). В стенке короба, где расположен кожух с колонкой, должны быть проделаны отверстия для прохода звука. Плюсы в том, что при таком размещении САЗ легко извлекать для обслуживания, средство защиты не уменьшает своими габаритами сечение вентиляционного канала и не мешает его работе.

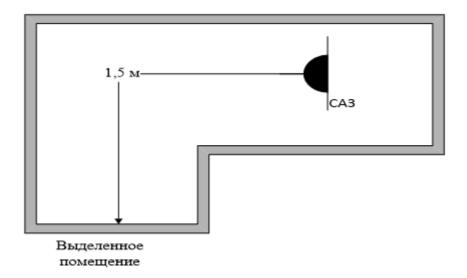


Рис. 1 — Пример размещения средств активной защиты в системе вентиляции

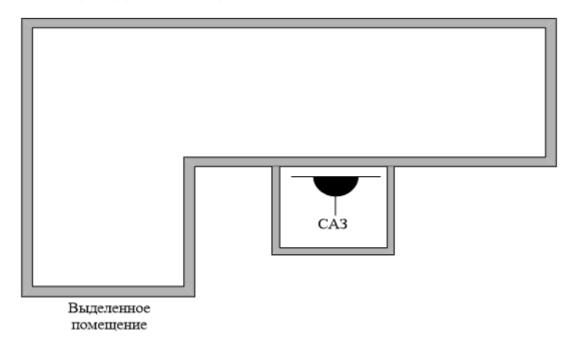


Рис. 2 — Пример размещения средств активной защиты в системе вентиляции

Оценка эффективности проводится с использованием измерительных средств для проверки выполнения норм эффективности от ее утечки по акустическому каналу (таких как СПРУТ-7, СПРУТ-11, ШОРОХ и т.п.)

Рекомендуется проводить измерения в несколько этапов:

- 1. Проведение измерений без САЗ;
- 2. Проведение измерений со САЗ;
- 3. Проведение измерений с оптимальным размещением САЗ.

Каждый вышеуказанный этап состоит из следующих шагов [3]:

- 1. Измерение уровня тестового сигнала L_{cli}, где і номер октавной полосы (от 1 до 5).
- 2. Измерение уровня фонового шума $L_{\text{ш i}}$, где і номер октавной полосы (от 1 до 5).
- 3. Измерение уровня акустического сигнала $L_{(C+ш)i}$, где i номер октавной полосы (от 1 до 5).
- 4. Расчет коэффициентов звукоизоляции.

Октавные уровни акустического сигнала L_{c2i} рассчитываются по формулам:

$$L_{c2i} = egin{cases} L_{(ext{c}+ ext{w})i}$$
, при $L_{(c+ ext{w})i} - L_{ ext{w}i} \geq 10 \ L_{(ext{c}+ ext{w})i} - \Delta$, при $L_{(c+ ext{w})i} - L_{ ext{w}i} < 10 \end{cases}$

где Δ — поправка в дБ, определяется из табл.1.

Таблица 1. Табличное значение поправки для уровней акустического сигнала

$L_{(c+u)i}$	>10	610	46	3	2	1	0,5
Δ, дБ	0	1	2	3	4	7	10

После этого рассчитываются октавные уровни звукоизоляции Q_i по формуле:

$$Q_i = L_{cli} - L_{c2i}$$

5. Рассчитанные значения Q_i сравниваются с нормативными значениями (табл. 2)

Таблица 2. Нормативные значения коэффициента звукоизоляции

		Нормативные значения октавного коэффи			
Место возмоч	кного перехвата	звукоизоляции, дБ			
	риденциальной	для помещений, не	для помещен		
	из помещения	оборудованных	оборудовані		
информации	из помещения	системами	системам		
		звукоусиления	звукоусиле		
Смежные	помещения	46	60		
	Улица без	26	50		
Уличное	транспорта	36	50		
пространство	Улица с	26	40		
	транспортом	26			

Заключение: после проведения оценки эффективности, результаты измерений с оптимальным размещением САЗ должны удовлетворять нормативным значениям звукоизоляции, и в то же время, оптимальное размещение САЗ позволяет уменьшить паразитные шумы, которые негативно влияют на человека.

В результате выполнения методов оптимизации, приведенных в статье, система активной защиты становится более оптимизированной: выполняются требования по защите от утечки по акустическому каналу, при этом в наименьшей степени оказывает негативной влияние на человека.

Литература

- 1. Куницын И.В. // Лабораторная работа. Методические указания, Маском.
- 2. Г.А. Бузов, С.В. Калинин, А.В. Кондратьев // Защита от утечки информации по техническим каналам. Учебное пособие, Телеком, 2005. —с. 172.
- 3. А.П. Зайцев, А.А. Шелупанов, Р.В. Мещеряков, С.В. Скрыль, И.В. Голубятников // Технические средства и методы защиты информации. Учебник для вузов, Машиностроение, 2009. с.449-450.