Евразийский
научный
журнал
Заявка на публикацию

Срочная публикация научной статьи

+7 995 770 98 40
+7 995 202 54 42
info@journalpro.ru

Химические основы экологического мониторинга

Поделитесь статьей с друзьями:
Автор(ы): Айсханов Султан Султанович, Айсханов Султан Катаевич
Рубрика: Химические науки
Журнал: «Евразийский Научный Журнал №5 2016»  (май)
Количество просмотров статьи: 2392
Показать PDF версию Химические основы экологического мониторинга

Айсханов Султан Султанович, ассистент кафедры "Общая хирургия" ФГБОУ ВО "Чеченский государственный университет", г. Грозный, аспирант кафедры госпитальной хирургии Северо-Оссетинской государственной медицинской академии

Айсханов Султан Катаевич, д.м.н., профессор кафедры "Общая хирургия" ФГБОУ ВО "Чеченский государственный университет", г. Грозный



Регулирование качества природной среды основано на определении экологически допустимого воздействия на нее, когда самоочищение природы еще способно работать. Определенными нормами такого щадящего воздействия являются установленные медико-токсикологами предельно допустимые концентрации загрязняющего вещества (ПДК), не вызывающие нежелательных последствий в природной среде. ПДК достаточно малы. Они установлены для различных объектов – воды (питьевая вода, вода водоемов рыбохозяйственного значения, сточные воды), воздуха (среднесуточная концентрация воздуха рабочей зоны, максимально допустимая разовая ПДК), почв.

Перечень и количество выбрасываемых в окружающую среду загрязняющих веществ чрезвычайно велики, по некоторым оценкам, до 400 тыс. наименований, включая радионуклиды. Например, диоксид серы, монооксид углерода, пыль, что характерно для городского воздуха; нефтепродукты, поверхностно-активные вещества для природных вод; пестициды для почв. Обязательно следует контролировать и самые токсичные вещества, отличающиеся наиболее низкими ПДК. Это позволяет сформулировать список приоритетных загрязняющих веществ, которые следует определять в первую очередь.

Для оценки опасности загрязнения следует иметь некий образец для сравнения. Эту функцию выполняют исследования, проводимые в биосферных заповедниках. Необходимо применять мощные, информативные и чувствительные методы анализа, чтобы контролировать концентрации, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что его традиционным способом не удается определить, но сделать это все равно нужно. Действительно, охрана окружающей среды – вызов аналитической химии.

Высокоэффективные методы контроля состояния окружающей среды исключительно важны для диагностики токсикантов. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. Кроме того, например, при определении основных компонентов атмосферного воздуха – кислорода, диоксида углерода, озона – требуется высокая точность. Многокомпонентность объектов окружающей среды предопределяет большие сложности в качественном и количественном определении загрязняющих веществ. Ключевая роль принадлежит химическим, физическим и физико-химическим методам аналитической химии. В связи с чрезвычайно большим количеством выполняемых анализов все большее значение приобретают автоматические и дистанционные методы анализа.

Глубоким содержанием наполнен перечень обобщенных показателей при мониторинге вод, характеризующих их общую загрязненность. Ими являются химическое потребление кислорода (ХПК), биологическое потребление кислорода (БПК), общий органический углерод, растворенный органический углерод, общий азот, адсорбирующиеся органические галогениды, экстрагирующиеся органические галогениды.

Важнейшие из них – ХПК и БПК. ХПК (COD – Chemical Oxygen Demand) – мера общей загрязненности воды содержащимися в ней органическими и неорганическими восстановителями, реагирующими с сильными окислителями. Ее обычно выражают в молях эквивалента кислорода, израсходованного на реакцию окисления примесей избытком бихромата.

Остаток бихромата оттитровывают стандартным раствором соли Fe (II):

Поскольку ХПК не характеризует все органические загрязнители, окисляемые до углекислоты и воды, проводят еще определение общего органического углерода. Для этого в пробе в жестких условиях окисляют органические загрязнители. Выделяющийся СО поглощают раствором щелочи. Оттитровав остаток щелочи кислотой, находят искомый показатель. Вычислив отношение ХПК к общему органическому углероду, получают показатель загрязненности сточных вод органическими веществами.

БПК (BOD – Biochemical Oxygen Demand) – это количество кислорода, требующееся для окисления находящихся в воде биологических процессов. Для его определения отбирают две одинаковые пробы воды. В первой сразу же определяют содержание растворенного кислорода. К пробе добавляют раствор соли Mn (II) и аммиак, в результате чего образуется окислитель – гидратированная форма двуокиси марганца:

О2 + 2Mn(OH)2 2 MnO2 aq + 2H2O

Далее вводят избыток иодида калия и выделившийся йод оттитровывают раствором тиосульфата:

MnO2 aq + 4H + + I- Mn2 + + I2 +2 H2O

Особенно велика роль современных методов аналитической химии, часто называемых инструментальными. Лишь современные методы анализа, среди них спектроскопические, электрохимические, хроматографические и др. (среди них отметим масс-спектрометрию), позволяют достигать необходимых низких пределов обнаружения, высоких чувствительности и избирательности определений. Ввиду важности этой проблемы многие фирмы насыщают рынок приборами простыми и сложными, специально приспособленными для решения задач мониторинга различных объектов.

Специфика объектов окружающей среды как объектов химического анализа заставляет подчеркнуть их изменяющийся состав, многокомпонентность и многофазность. Известным примером может быть ключевая роль оксидов азота в образовании фотохимического смога, усиливающегося под влиянием озона и углеводородов. Множество протекающих в природной среде химических, биохимических и биогеохимических процессов предопределяет чрезвычайную сложность химико-аналитических исследований. Это необходимо учитывать при анализе жидких сред: растворов (они могут быть истинными, коллоидными, насыщенными), суспензий, эмульсий, летучих и нелетучих твердых веществ, газов; при определении различных неорганических и органических веществ, исследований живого вещества. Принципиально важны пробоотбор, сохранение и консервация проб и пробоподготовка, необходимая для проведения анализа. Для этого используют все способы, применяемые в химическом анализе: измельчение твердых образцов, растворение, обработку различными химическими реактивами, нагревание, один из наиболее современных приемов – микроволновое и ультразвуковое облучение – все для полного извлечения определяемых компонентов. Например, при учете всех форм нахождения металлов в водах можно определить растворимые металлы (в фильтрате пробы, подкисленном азотной кислотой), суспендированные металлы (после кислотного озоления – «мокрого сожжения» кислотами окислителями осадка на фильтре), общие металлы (после «мокрого сожжения» всей пробы), экстрагирующиеся металлы (анализ фильтрата после обработки пробы смесью азотной и соляной кислот). Необходимо учитывать также способность ионов тяжелых металлов к гидролизу и гидролитической полимеризации и лигандный состав природных вод – наличие гуминовых кислот и, следовательно, формы существования в них металлов.

Сложность почв как объекта анализа определяется их гетерогенным и многофазным характером. Минеральная основа органических и биологических компонентов: гумусовые вещества, почвенный раствор и воздух – вот объекты анализа в этом случае. К ним следует прибавить еще и оказывающие наиболее сильный загрязняющий эффект минеральные удобрения, пестициды и продукты их превращения.

При определении следов веществ чувствительности применяемых инструментальных аналитических методов иногда бывает недостаточно. В этом случае применяют различные способы аналитического концентрирования: экстракцию органическими растворителями, не смешивающимися с водой, сорбционное концентрирование, дистилляцию, соосаждение, использование криогенных ловушек. Например, органические загрязнители, как правило, присутствуют в питьевой воде в очень малых количествах порядка ppb (part per billion – часть на миллиард, 0,000001 мг/л). Для выполнения определений их необходимо сконцентрировать. Летучие органические вещества извлекают из вод потоком инертного газа и улавливают твердыми адсорбентами. Далее нагреванием осуществляют их термическую десорбцию и переносят сконцентрированные компоненты из ловушки в газовый хроматограф. Нелетучие органические вещества экстрагируют органическими растворами. Экстракты анализируют методами высокоэффективной жидкостной хроматографии. Экстракцию веществами, находящимися в сверхкритическом состоянии (например, диоксид углерода), упрощающую приготовление концентрата, используют при извлечении полициклических ароматических и гетероциклических углеводородов, пестицидов, полихлорированных бифенилов, диоксинов из твердых образцов, в том числе почв.